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A testing system is described which measures the fracture stress of square plates. The loading is 
concentric and the plate is simply supported at the corners. The effective stressed volume can 
conveniently be changed by varying the diameter of the loading circle. The test is used to measure 
the fracture characteristics of square alumina plates 103 mm square and 1 mm thick. The 
displacement of the centre of the plate at fracture is about 3 mm, so the elastic system is 
geometrically non-linear. A non-linear finite element analysis using the ABAQUS program gave 
a stress distribution that was found to be in very good agreement with measured stress. The finite 
element solution was used to calculate stress-volume and stress-area integrals, which are 
tabulated, and these give the effective volumes and areas, for loading circles of 25 and 7.5 mm 
diameter. Two batches of plates were fractured, one with a loading circle of 25 mm diameter and 
the other 7.5 mm. Weibull plots were made assuming zero threshold stress. The first plots used the 
maximum tensile stress in the plate derived from the measured load using the finite element 
solution. This stress occurs at the intersection of the plate diagonal with the loading circle. 
Different values of m (19.58 and 15.48) were given for the two loading circle diameters. Plots 
based on the stress determined at the fracture origin gave nearly identical values of m (13.92 and 
13.72). Weibull statistics and the values of the stress-volume or the stress-area integrals were 
used to predict the ratio of the average fracture stress for the two loading circle diameters. The 
predictions showed good agreement with the measured values. The stress-area integrals, which 
are simpler to calculate, gave almost as good predictions as did the stress-volume integrals. 

1. In t roduct ion  
A variety of loading systems has been used to measure 
the fracture stress of brittle materials. For uniaxial 
tension, three-point and four-point bend loading are 
popular [1] and the radial expansion of a ring [2] has 
merit. The diametral compression of a "0" specimen 
has been proposed in an attempt, not entirely success- 
fully, to avoid the severe experimental difficulty of 
securing uniform stress in a rod or strip in tension. 
Biaxial stress tests include diametral compression of 
a disc [-3], called the Brazilian test, and a variety of 
forms of lateral loading of discs, including uniform 
pressure on a simply supported disc [4], central load- 
ing of a disc and "ball on ring" loading [5]. 

The work now described aimed to extend the range 
of loading systems by exploring the possibility of using 
concentrically loaded square plates simply supported 
at each corner, as a fracture test for ceramics under 
biaxial tension..The advantage of a test that uses 
square plates is tha t  ceramic material is often fab- 
ricated in this shape. Also the maximum stress is in 
the central region so the edges of the plate, where the 
defect population is frequently atypical of the bulk of 
the material, is less intensely stressed and fracture is 
not initiated there. The use of concentric loading pro- 
vides a convenient means, through changing the dia- 
meter of the loading circle, of exploring the effect on 
the fracture statistics of changing the volume of the 

stressed material. An investigation of this volume 
effect is reported. 

A disadvantage of a test using square plates is that 
they are seldom perfectly fiat which demands adjust- 
ment of the height of one of the corner supports. It 
was established that, for the 103 mm square plates of 
alumina used in the work now described, it was pos- 
sible to correct for out-of-flatness by putting a suitable 
shim under the corner of the plate that did not touch 
the support. The thickness of the shim required was 
never more than 0.1 mm which is less the 1/30 of the 
central deflection of the plates at the point of fracture. 

If one corner of the plate does not touch the corner 
support in the unloaded state then the relation be- 
tween applied load and the strains measured at the 
centre of the plate shows a characteristic discontinuity 
at the point where the plate deflection causes the 
fourth corner to make contact with the support. The 
use of shims in the manner now described was found 
to eliminate this discontinuity. 

For stiffer plates, with a higher ratio of thickness to 
diagonal length than those used in this investigation, 
adjustment of the corner support will be more critical. 

1.1. The stresses and deflections in the 
loaded plate 

The alumina plates were 103 mm square and about 
1 mm thick. They were supported at the four corners 
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Figure 1 Diagram showing the supporting and loading arrange- 
ments for the plate. A, neoprene "O" ring. 

on 9.5 mm diameter steel spheres located in diagonal 
"V" grooves in a substantial square steel plate (Fig. 1). 
This arrangement permits free radial movement of the 
points of support as the plate deflects. The concentric 
load was applied through a neoprene "O" ring. Cir- 
cumferential uniformity of the concentric load was 
secured by placing a square steel plate on top of the 
"O" ring and locating a 4 mm diameter steel sphere, 
through which the load was applied, precisely in the 
centre of the "O" ring. 

Complex movements of the corner points of 
support arise as the plate deflects. There are three 
contributions: 

(i) due to the change of slope of the plate at the 
point of support (maximum 0.3 mm inwards); 

(ii) due to elastic strain in the underside of the plate 
(maximum 0,05 mm outwards); 

(iii) due to shortening of the projected length of the 
deflected mid-plane of the plate (maximum 0.1 mm 
inwards). 
The maximum combined effect is an inward move- 
ment of each point of support by about 0.35 mm. This 
in itself has a trivial effect on the relation between 
applied load and the stress in the plate and no correc- 
tion has been made for it. There is also no danger of 
the plate rolling off the corner supports. 

The relation between load and the central deflection 
of the plate was measured and is plotted in Fig. 2 
for loading circles of 25 mm and 7.5 mm diameter. The 
relation is non-linear at displacements above about 
0.6 mm. The centre deflection at the fracture loads is 
about 3 ram, which is about three times the plate 
thickness. Under these large deflections the system 
is geometrically non-linear, as Fig. 2 reveals, and 
membrane stresses arise�9 

It is desirable to carry out a detailed stress analysis 
of the loaded specimen in any fracture test, because 
rarely are conditions such that simple assumptions 
about the stress distribution are valid. In this case 
a finite element analysis, which took account of the 
non-linearity, was carried out to calculate the stress 
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Figure 2 Relation between applied load and deflection of the plate 
at the centre. 25 mm loading circle; (�9 finite element solution, 
(0) measured. 7.5 mm loading circle; (&) finite element solution, 
( �9 measured. 

distribution in the plate as a function of applied load. 
This used the non-linear ABAQUS program�9 

The value of Young's modulus for the alumina 
plates, needed for this analysis, was measured by com- 
paring the load required to produce a centre deflection 
of 0.25 ram, which is well within the range of linear 
behaviour, for an alumina plate and a steel plate of 
similar dimensions. Two comparisons were made, one 
with a loading circle 25 mm diameter and the other of 
7.5 mm diameter. It was assumed that the centre de- 
flection was proportional to pa2(1 - v 2 ) / E t  3, where 
P is the applied load, a is the length of the side of the 
square plate, t is the plate thickness, E is Young's 
modulus, and v is Poisson's ratio. It was assumed 
tfiat for steel E = 207 G N m  -2 and v = 0.30, and for 
alumina v = 0.25. Measurements for both loading 
circle diameters gave a value of E = 360 G N m  -2 
which is the value used in the finite element analysis. 
The value is consistent with the observed porosity 
of 2.5%. 

The finite element calculations were carried out for 
two diameters of loading circle, 25 and 7.5 mm. The 
finite element meshes for these two conditions are 
shown in Figs 3 and 4. The mesh is finer in the vicinity 
of the loading circle for the 7.5 mm diameter case, 
because the stress gradients are steeper. The applied 
loads were 120, 240 and 300N for the 25ram circle, 
and 80, 160 and 200 N for the 7.5 mm circle. The upper 
end of these load ranges corresponds to the average 
fracture loads for the alumina plates with the respect- 
ive loading circle diameters. 

The central deflection calculated by the finite ele- 
ment programme showed good agreement with the 
measured values (see Fig. 2), which indirectly confirms 
the accuracy of the measured value of Young's 
modulus for the alumina plates. 

Fig. 5a and b show the radial variation of the 
maximum principal stress, cyl, calculated by the finite 
element programme for 25 and 7.5 mm diameter load- 
ing circles at loads close to  the average fracture loads 
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Figure 3 Finite element mesh for a 25 mm diameter loading circle. 
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Figure 4 Finite element mesh for a 7.5 mm diameter loading circle. 

of the alumina plates. The stress rises to a maximum at 
the load line and the increase from the centre of the 
plate is greater for the larger diameter loading circle. 
The greatest stress occurs on the loading circle where 
it is intersected by the plate diagonal. The stress vari- 
ation within the loading circle is much less for the 
smaller diameter loading circle. 

The stresses calculated by the ABAQUS program 
were compared with measured values using 0-45~ ~ 
strain gauge rosettes, with a gauge length of 1 mm. 
Because the plates are so thin, corrections had to be 
made for the stacking geometry of the gauges. The 
distance of the three gauge elements from the plate 
surface was measured by preparing a micro-section 
through the rosette and photographing it at a calib- 
rated magnification. 

Fig. 6a to c compare the measured values of the 
tensile principal stresses, cr 1 and or2, on the tensile 
surface of the plate with the calculated values at three 
locations, one at the centre of the plate and the other 
two corresponding to the points of maximum and 
minimum values of cr 1 round the loading circle of 
25 mm diameter. The results emphasize the non-lin- 
earity of the load-stress relations. Fig. 6a includes 
measured and calculated values at the centre of the 
plate on the compressive face and confirms that mem- 
brane stresses exist there. Fig. 7 shows a similar com- 
parison for the stresses at the centre of the plate for 
a 7.5 mm diameter loading circle. The data show ex- 
cellent agreement between the measured and cal- 
culated values. On the strength of this evidence the 
calculated stresses have been used to analyse the 
fracture data. 

1.2. Fracture  ana lys i s  
We report measurements of the fracture loads of 
batches of square alumina plates concentrically 
loaded. We explore the validity of analysing these data 
using Weibull statistics with zero threshold stress. 

The fracture survival probability, Ps, for specimens 
uniformly stressed to a value ~ is given by 

"s = e x p [ - ( ~ m ( l ' ] " ]  (1) 
k \ a /  \m / j 

where O is the average fracture stress of a batch of 
specimens, m is the Weibull modulus and (l/m!) is the 
gamma function ?[(I/m) + 1]. 

The fracture survival probability of an in- 
homogeneously stressed specimen is derived from the 
product of the survival probabilities of the individual 
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Figure 5 Variation of maximum principal stress, cr 1 with radial distance from centre for three directions (O) 0 = 45 ~ (~) 0 = 22.5 ~ 
([]) 0 = 0 ~ (a) 25 mm diameter loading circle. (b) 7.5 mm diameter loading circle. 
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elements. This approach, which implies that general 
fracture is initiated when the weakest element fails, 
predicts 16] 

P= = exp - # ~ \ r n ' ]  1 

where ~A is the average fracture stress of a specimen 
of unit volume uniformly stressed, o i is the maximum 
tensile stress in an element i of volume AV~ and the 
body comprises N elements. 

The sum is made non-dimensional by introducing 
the total volume of the specimen, V0, and the peak 
tensile stress in the whole specimen, % ,  whence 

m 1 m 

Ps = exp[(~AP ) ( ~ t ) K v V o ]  (3, 

where 

1 \ C Y p /  V 0 ( 4 )  

The effective volume, VE, is defined as K ,  Vo, and is 
the volume of an homogeneously stressed specimen 

Figure 6 Comparison between the (O, ~) measured and (�9 ~) 
calculated (finite element) principal stresses for a 25 mm diameter 
loading circle. (a) at the centre of the plate, on both upper and lower 
faces; (b) at the intersection between the loading circle and a plate 
diagonal (the point of greatest principal stress); (c) at the intersection 
between the loading circle and the line joining the midpoint of 
opposite sides of the plate. (O) ol, (A) 0-2, (0, []) c h = 0" 2. 

which would have the same fracture survival probabil- 
ity at a stress Op as the inhomogeneously stressed 
specimen at a peak stress of Cyp. 

The region in which fracture is initiated in the plates 
that are our concern is stressed in biaxial tension and 
both tensile principal stresses c h and cy 2 contribute to 
the fracture probability. We take account of c h and o 2 
by assuming that the overall fracture probability is the 
product of all the element fracture probabilities asso- 
ciated with both cy I and o 2 acting independently. An 
alternative assumption has been assessed by Batdorf 
and Cross [7], that the fracture probability of an 
element depends on the macroscopic stress perpen- 
dicular to the crack plane for a uniform distribution of 
randomly oriented cracks. Batdorf has shown [8] that 
the fracture probability for a biaxially stressed element 
derived on this assumption is. related by a constant 
factor, for a given value of m, to the probability com- 
puted on the assumption that o 1 and cr 2 act inde- 
pendently. So the assumption of independence of o 1 
and o 2 which we adopt herein will give the same 
relative values of K for different stressed volumes as 
does Batdorf 's  assumption. 

It then follows that if c h and cy 2 act independently 

,s= oxp[- l , o . A / /  (5) 

where 

~=1 o~' V 0 (6) 

where OlZ is the greatest principal stress in element 
i and o2i is the lesser tensile principal stress. The 
effective volume of the specimen 

VE2 = K v 2  Vo (7) 
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Figure 7 Comparison between the (�9 z~) measured and (O, ~) 
calculated (finite element) principal stresses at the centre of the plate 
(both upper and lower faces). (�9 ol, (&) cYz, (O, U]) erl = era. 
Loading circle diameter, 7.5 mm. 

Alternatively it can be assumed that fracture is 
always initiated at the surface and that therefore only 
the surface tensile stresses contribute to the fracture 
probability. Under these circumstances the survival 
probability becomes 

Ps = exp[ - (Cy--p-p~m(ll)mA~ \m' /  

• i ((Y~i + O"~i~ AA,] 
, ~ / ~-oJ (8) 

where A o is the total area of the tensile face of the 
specimen and AA~ is the area of the ith element. 

The effective area AE2 = KA2A o where 

KA2 = i (.~ + crY'i) AA~ 
i= 1 Op A o (9) 

If the average peak stress at fracture for a batch of 
specimens of effective volume VE2 is OrE2 then, for 
a specimen stressed to a specific peak stress op, the 
survival probability is 

Ps ~ exp [ -- ( ~ ~m ( ~ ' )  m ] , k , ~ V E 2  J (10) 

The corresponding relationship for surface nucleated 
fracture is 

, m ,, m ,, (15) CYAE2 A~2 = OAE 2 AE2 

where C(4E2 is the average peak stress at fracture of 
a batch of specimens all of effective area A~2. 

We test the accuracy with which these expressions 
predict the relationship between the measured fracture 
stresses in the work now described. 

Values of Kv2 and KA2 w e r e  computed from the 
finite element solution for the stresses in each element 
and the element area or volume. The stresses were 
given at the four gauss points in each element. 

For  the calculation of KA2 it was assumed that the 
tensile surface stress at each gauss point could be 
assigned to a quarter of the area of the element. 

The calculation of Kv2 w a s  based on calculated 
surface stresses at the four gauss points in each ele- 
ment on the lower (usually tensile) and upper (com- 
pressive) faces of the plate. It was assumed that each 
principal stress varied linearly across the plate (Fig. 8) 
where Oli is the surface tensile stress and o'~i is the 
surface compressive stress for the ith element. If ta is 
the depth of the layer stressed in tension, and t is the 
plate thickness then if o x is the value of the stress 
a distance x from the plane of zero stress, we require 

o ~ ~ d V  (16) 

ignoring the contribution of compressive stresses to 
the fracture probability. 

If the area of the element is AA~ then d V = AA~ dx 
and the integral becomes 

flI (CYliX~ m AAita (cYli) m 
AA, k--f-f-/ dx - (m + 1) (17) 

where 

o'ai 
t 1 -- t (18) 

cYa~ + c~'~i 

A similar expression arises from the contribution of 
the second tensile principal stress ozi where the depth 
of the tensile region 

This is identical to Equation 5 whence it follows that 

Kv2 V o 1 
- ( 1 1 )  

CY~ ~r~E 2 

but because ~ is a constant for a particular material 

O~E2Kv2Vo = constant (12) 

or 

O~E2 VE2 = constant  (13) 

So if a batch of specimens all of effective volume 

V~2 have an average fracture s t ress  of (~IZE2 and 
another batch of specimens all of effective volume 

V~2 have an average fracture stress of (~E2 then the 
analysis predicts that 

m m 
' V~ " 'V~ (14) O'VE2 2 ~--" O'VE2 2 

0"21 
t2 - (19) O'2i ~- O't2i t 

summing these terms over all the elements, then 

1 i cr"~itrAAi + c;~it2AAi (20) 
Kv2 - (m + 1)i=x o~tAo 

where A 0 is the area of the lower face of the plate. In 
performing these sums, if either principal stress at the 
gauss point on the lower face of the plate was com- 
pressive, its contribution to the fracture survival 
probability was assumed to be zero. 

Because of the geometrical non-linearity, t 1 and t 2 

vary over the plate because the magnitude of the 
membrane stresses vary. However, it turned out that 
within the region of the plate which makes the major 
contribution to the fracture probability, tl and t 2 are 
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Figure 8 Diagram showing the basis for the calculation of the 
volume-stress integral. 

constant and nearly equal. If we put t 1 = t 2 = con- 
stant in Equation 20 then 

gv2 = t(m + 1) i=1 cry' A o 

o r  

t l  
Kv2 - t(m + l) KA2 (22) 

So Kv2 is proportional to KA2 and each will predict 
the same effect of stressed volume on the average 
fracture stress. 

Table I lists computed values of Kv2 and KAz for 
loading circle diameters of 7.5 and 25 mm and loads of 
200 and 300 N, respectively. These loads are close to 
the average fracture loads for the alumina plates. The 
table confirms that the ratio of the values of Ka2 for 
the two loading circle diameters and the correspond- 
ing ratio of Kv2 values are close, so Equations 14 
and 15 will predict the same ratio of average fracture 
stresses for the two loading geometries. 

Table II lists values of KA2 for a range of m values 
and for three load values for the two loading circle 
diameters. The K values are quite sensitive to m at low 

m values, as would be expected, but in the load range 
which produces fracture of the plates the K values are 
not very sensitive to load value. For  d = 25 cm, ~1 
contributes about 80% to the total fracture probabil- 
ity and for d = 7.5 cm about 60%. 

In the testing method now described, the stressed 
volume of the material can be varied by changing the 
loading circle diameter. It is of interest to establish 
how changes of the diameter of the loading circle are 
related to changes of the effective area. 

The ratio of the areas within the loading circle of 
diameters 25 and 7.5 mm is 11.1. The linear elastic 
solution for the stresses in the plate shows nearly 
constant stress within the loading circle. For high 
values of m, cy '~ will fall off steeply outside the loading 
circle, so the ratio of effective areas should approach 
11.1. The non-linear case with which we are concerned 
is more complex. An estimate of the real effective 
surface area of the plate contributing to fracture is 
obtained by halving the values of KA2, because two 
principal stresses are included in the computation of 
KAZ. Table III lists these values and, for comparison, 
the fraction of the plate surface within the loading 
circle, f both for the 7.5 and 25 mm loading circles. In 
the case of the 7.5 mm diameter loading circle, the 
values of Ka2/2 approach f a t  high values of m but are 
still about 1.5f at m = 20. This is because the region 
outside the loading circle makes a significant contri- 
bution to fracture probability; the stress inside the 
loading circle is nearly constant. In contrast, for the 
25 mm loading circle the values of K~2/2 are less than 
f a t  high values of m. This is because the stresses rise 
from the centre of the plate to the line of the loading 
circle (see Fig. 5) so the major contribution to the 
fracture probability comes from an annular region 

TAB LE I Comparison of K values based on area and volume. Concentrically loaded square plates 100 mm x 1.01 mm thick supported at 
the corners. E = 360 G N m  -2, v = 0.25 

m Ka2 Kv2 

d = 7.5 mm, d = 25 mm Ratio 
load 200 N load 300 N Kzs/Kv. 5 

d = 7.5 mm, d = 25 mm, Ratio 
load 200 N load 300 N K25/Kv. 5 

10 0.020 81 0.12740 6.12 
13.82 0.015 45 0.077 72 5.03 
15 0.014 54 0.068 6 4.71 
17.53 0.013 10 0.05427 4.14 
20 0.012 10 0.044 69 3.69 

1.045 • 10 -3 6.195 • 10 -3 5.92 
5.769 • 10 -'~ 2.846 • 10 -3 4.93 
5.030 • 10 -4 2.332 X 10 -3 4.63 
3.913 X 10 -4 1.598 • 10 -3 4.08 
3.189 X 10 -4 1.160 • 10 -~ 3.63 

T A B L E  I I  Effect of applied load and Weibull modulus, m, on the values of KA2 

Loading circle m Ka2 
diameter (ram) 

80N 120N 200N 240N 300N 

25 

7.5 

10 0.13209 
13.82 0.093 73 
15 0.08617 
17.83 0.073 66 
20 0.064 59 

10 0.023 57 0.02180 
13.82 0.01736 0.01627 
15 0.01633 0.01534 
17.83 0.01472 0.013 89 
20 0.013 64 0.0 l 2 90 

0.020 81 
0.01545 
0.014 54 
0.01310 
0,01210 

0.12478 
0.079 56 
0.071 11 
0.057 58 
0.048 23 

0.12740 
0.077 72 
0.068 60 
0.054 27 
0.044 69 
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TABLE III  Values of KA2/2 compared with the fraction of the 
area of the plate, f, within the loading circle 

m K~z/2 

25 mm diameter 7.5 mm diameter Ratio 
loading circle, loading circle, K2JK7. 5 
300N load 200N load 

10 0.0637 0.0104 6.12 
15 0.0343 0.00727 4.71 
20 0.0223 0.00605 3.69 

f =  0.0491 f =  0.00442 f25/~.5 = 11.11 

round the loading circle which has an area less than 
that within the loading circle. 

The fact that, for ~ the reasons explained, Ka2/2 < f  
for d = 25 mm and KA2/2 > f f o r  d = 7.5 mm means 
that the ratio of (KA2)Z5 mm/(Ka2)7.5 mm is significantly 
less than the ratio of the areas within the respective 
loading circles and decreases as m increases. So the 
magnitude of the size effect obtained by varying the 
diameter of the loading circle is less than might appear 
at first sight. 

2. Experimental procedure 
Fracture tests were carried out on 103 mm square 
alumina plates 1 mm thick using the concentric load- 
ing system now described. The plates are produced 
for the substrate for electrical circuits and were kindly 
donated by Vesuvius Zyalons Ltd. The advantage of 
this material for the purpose of the present research is 
that the production process incorporates an effective 
system of statistical control which secures a consistent 
structure from plate to plate. The plates are substan- 
tially pure alumina. The sintering conditions give 
a porosity of 2.5%. The grain size is between 2 and 
10 gin. 

One batch of plates was tested with a loading circle 
diameter, d, of 25 mm and another batch with 
d = 7.5 ram. Prior to loading to fracture the plates 
were heated overnight in an open stack in an oven at 
150 ~ Each plate was tested immediately after it had 
been removed from the oven and had cooled to room 
temperature. The cross-head speed of the testing 
machine was 5 m m m i n - 1 ;  it took a little over half 
a minute to fracture a plate. 

Plate fracture was initiated close to the loading 
circle. Typical crack patterns for the 25 and 7.5 mm 
diameter loading circles are shown in Fig. 9. The point 
of greatest tensile stress lies on the loading line at the 
intersection with a plate diagonal. Fracture was not 
always initiated at that point because of statistical 
variations of flaw size. The location of the fracture 
origin for all the plates in the two batches was 
determined. 

3. Analysis of experimental data 
For  the two batches of plates a Weibull plot was made 
of lnln(l /P,)  against ln~r, where c~f is the fracture 
stress of the plate, and the survival probability 
P, = (n/N + 1). The rank order fracture stress of the 
plate is n and N is the total number  of specimens in the 
batch. In the plot in Fig. 10, crf is the maximum tensile 
stress in the plate at fracture. This stress arises at the 
point of intersection of the loading circle and the plate 
diagonal and was determined from the fracture load 
using the finite element results. The Weibull moduli, 
m, were determined from a least squares fit of 
a straight line through the experimental points 
expressed as lnln(1/Ps) and lncrf, respectively. 

The mean fracture stress and the value of m is given 
in Table IV for loading circles of 25 and 7.5 mm 
diameter. The specimens with the larger stressed vol- 
ume have the lower average fracture stress, so a size 

F~gure 9 Typical crack patterns for fractured plates: (a) 25 mm diameter loading circle; (b) 7.5 mm diameter loading circle. The fracture origins 
are close to the loading circle in each case. 

1084 



I i 

*2.0[ m=15.48, o 

+'."r . / /  
0 

t ~  Q 

-1,0 

_2 

o~- 2.0 
- u  

- 3.0 

- 4.0 , / , ~ , 
5.6 5.7 s.8 5.9 6.0 6.1 

Log C~l 

Figure 10 Weibull plots of fracture stress-survival probability for 
two batches of alumina plates: (�9 loading circle 7.5 mm diameter; 
(&) loading circle 25 mm diameter. The fracture stress, of, here is 
the maximum tensile principal stress in the specimen which occurs 
at the point of intersection of the loading circle and a plate diagonal 
on the lower face of the plate. 

TABLE IV Fracture data for alumina plates 

Loading circle Mean fracture Weibull KA2 for 
diameter (mm) stress (N mm -2) modulus, m m = 17.53 

7.5 375.1 1%58 0.013 10 
25 340.6 15.48 0.054 27 

effect is established. The values of m are comparable 
but not equal. 

We now compare the relationship between the aver- 
age fracture stresses for the two loading circle dia- 
meters with that predicted from Weibull statistics. 
Because the two batches of plates are of identical size, 
A o is the same for each, so it follows from Equation 15 
that 

(Y~.5 (KA2)7.5 ---- ~ 5 ( K A 2 ) 2 5  (23) 

where c57. 5 is the average fracture stress for the batch 
of plates fractured with a 7.5 mm diameter loading 
circle. For the comparison we use the average value of 
m, 17.53, and the values of KA2 for this are given in 
Table IV. The data yield 

( ~YT5~m = 5.43 (24) 
~25 / 

(KA2)25 
- 4 . 1 4  ( 2 5 )  

(KA2)7.5 

According to Weibull statistics these ratios should be 
equal. 

The agreement is quite good. To illustrate this, if we 
accept that the average fracture stress for d = 25 mm 
is 340.6 N mm-2,  the Weibull statistics predict that 

~57. s = 340.6(4.14)1/17"53 

= 369.4 N m m - Z  (26) 

This compares with the measured value of 
375.1 N m m  -2. The error in the prediction is about 
16% of the difference between the two average 
fracture stresses. 

An alternative analysis was prompted by the obser- 
vation that the fracture origins were not always 
located at the point of maximum tensile stress in the 
plate. The stress at the head of a larger flaw in a region 
of lower nominal stress may be higher than that at the 
head of a smaller flaw at the point of greatest nominal 
stress. In this situation the fracture origin is displaced 
from the point of maximum stress. The origin of frac- 
ture was located in each plate and the tensile principal 
stresses at that location were determined from the 
stress distribution calculated by the finite element 
analysis. The Weibull plots in Fig. 11 use fracture 
stresses determined by this procedure. The fracture 
data are gathered in Table V. 

Again, making the Weibull comparison using the 
average of the two m values, 

(O7 5/t3's2 
'~ = 4.39 (271 

\625 / 

(Ka2)~5 
= 5.03 (28) 

(KA2)7.5 

The ratio of KAZ values predicts that, if the measured 
fracture stress for d = 25 mm is 328.4 N m m -  z, then 
that for d = 7.5 should be 369.1 N m m  -2 compared 
with the measured value of 365.5 N mm-2.  The error 
in this prediction is about 10% of the difference be- 
tween the two measured values, which is better than 
the previous comparison. 

The values of Kv2 are listed in Table V. If we use 
these effective volume values to predict the relation- 
ship between the average fracture stresses we get, 
referring to Equation 15, 

(Kv2)25 - 4.93 = (6_7"s] " (29) 

m 

(Kv2)7.5 \ 0 " 2 5 /  

o = 

o = 

�9 '-2.0 ' m=13~72/ / 

/oo/o ,-1.0[ 

~ 
-1.0 i 

- 2.0] 

-3.0 / ~ 

-4.0K , , , 
5.6 57 5.8 5.9 6.0 6J 

Log (df) 

Figure 11 Weibull plots of the same data as in Fig. 10 but here o r is 
the maximum tensile principal stress at the location of the fracture 
origin for each plate. (�9 7.5 mm diameter, (A) 25 mm diameter. 
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T A B L E  V Fracture data for alumina plates based on fracture stresses calculated at the fracture origin 

Loading circle Mean fracture m Ka2 for Kv2 for 
diameter (mm) stress (N mm -z) rn = 13.82 m = 13.82 

7.5 365.5 13.92 0.01545 2.846 x 10 -3 
25 328.4 13.72 0.07772 5.76 x 10 -4 

This predicts a value of 368.6 N mm-  2 for the average 
fracture stress for d = 7.5 mm. The error is 8.4% of the 
measured difference, which is slightly less than that for 
the prediction based on effective areas. 

4. Discussion 
A test using concentrically loaded square plates 
simply supported at the corners is shown to be a 
valid method for measuring the fracture character- 
istics of brittle materials. It has been demonstrated 
that the test can also measure stress-volume effects 
conveniently. 

It has been shown that, if the Weibull analysis uses 
the maximum stress in the plate at fracture for the 
fracture stress, then the Weibull modulus varies with 
the stressed volume. This raises a fundamental ques- 
tion about the validity of the use of Weibull statistics 
to analyse such data. The reason for the variation of 
m values is that an element of the statistics is the 
scatter in the value of (~v - ~f) where cyp is the max- 
imum stress in the specimens and c~f is the stress at the 
location of the fracture origin. The effect of this is seen 
to be, from the results now described, to reduce the 
spread of fracture stress values (that is to increase m) 
by an amount that is greater, the smaller is the stressed 
volume. The magnitude of this effect will be influenced 
by the steepness of the stress gradients in the specimen. 

The fact that the m values obtained using computed 
stresses at the origin of fracture are nearly equal im- 
plies that the two loading systems see a statistically 
significant defect population. The equality of m values 
also permits Weibull statistics to be used with a clearer 
conscience. So the use of fracture-origin stresses com- 
mends itself as a sounder basis for the prediction of 
stress-volume effects because it eliminates the contri- 
bution to fracture statistics from the dispersion of 
( ~ p -  Cry) values and, in consequence, delivers data 
that are more closely related to material properties 
rather than the characteristics of a particular loading 
system. 

The two ways explored here of presenting the frac- 
ture data each have a role. The engineer's primary 
interest will be in the load which the plate can carry. 
The statistical description of that quantity is best 
indicated by expressing the fracture stress as the peak 
stress in the plate at fracture. On the other hand, the 
material scientist interested in the behaviour of the 
material, would gain a clearer insight into the material 

characteristics from data based on the stress at the 
point of fracture initiation. 

It has been demonstrated that, for these concent- 
rically loaded square plates, prediction of the effect of 
stressed volume on average fracture stress can be 
made with similar accuracy using either effective vol- 
umes or effective areas. Because the latter are more 
easily computed there is a natural preference to use 
them. 

The plates used in this research have a high ratio of 
diagonal length to thickness. This causes the deforma- 
tion to be geometrically non-linear. For plates with 
lower ratios the behaviour up to fracture will be more 
nearly linear, but, for small ratios, shear stresses will 
need to be taken into account. We are exploring the 
stress distribution in plates of different aspect ratio 
and are also using the test now described to obtain 
fracture information on other brittle materials. 
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